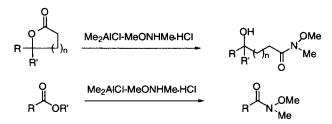


PII: S0040-4039(97)00429-2


## Efficient Method for Preparation of *N*-Methoxy-*N*-methyl Amides by Reaction of Lactones or Esters with Me<sub>2</sub>AlCl-MeONHMe·HCl

Takeshi Shimizu,\* Katsuhisa Osako, and Tadashi Nakata\*

The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan

Abstract: The reaction of a lactone or an ester with dimethylaluminum chloride and N, O-dimethylhydroxylamine hydrochloride provided an efficient method for preparation of N-methoxy-N-methyl amide. © 1997 Elsevier Science Ltd.

*N*-Methoxy-*N*-methyl amides (Weinreb amides) are very useful intermediates in organic synthesis since they react efficiently with organometallics and hydrides to produce the ketones and the aldehydes, respectively.<sup>1</sup> The *N*-methoxy-*N*-methyl amides have been generally prepared by condensation of carboxylic acids and *N*, *O*-dimethylhydroxylamine hydrochloride in the presence of a coupling reagent such as DEPC or py·BOP, or by treatment of lactones, esters or *N*-acyl oxazolidone with trimethylaluminum-*N*, *O*-dimethylhydroxylamine hydrochloride (Me<sub>3</sub>Al-MeONHMe·HCl).<sup>2</sup> Recently, an alternative method for preparation of *N*-methoxy-*N*-methyl amides from esters using MeONHMe·HCl and an organomagnesium reagent has been reported.<sup>3</sup> In our synthetic studies of natural products,<sup>4</sup> it was found the general method using Me<sub>3</sub>Al-MeONHMe·HCl, however, gave unsatisfactory results in the case of sterically hindered lactones. After several attempts to improve the aminolysis, we have found that dimethylaluminum chloride and *N*, *O*-dimethylhydroxylamine hydrochloride (Me<sub>2</sub>AlCl-MeONHMe·HCl) smoothly reacted with the lactones to afford the desired *N*-methoxy-*N*-methyl amides in exellent yield. In this paper, we describe an efficient method for preparation of *N*-methoxy-*N*-methyl amides from lactones or esters using Me<sub>2</sub>AlCl-MeONHMe·HCl.



Aminolysis of the sterically hindered lactone 1 by the general method using 5 equiv of Me<sub>3</sub>Al-MeONHMe HCl in CH<sub>2</sub>Cl<sub>2</sub> afforded the *N*-methoxy-*N*-methyl amide 3 in only 50% yield after 3 h and in 55% yield after 24 h at room temperature along with the recovered 1 (Table 1, entry 1). On the other hand,

| Entr | y Lactone                      |   | Aluminum H<br>Reagent (equiv)                                                                                | Reaction<br>Time       | Amide                                           |    | Yield Re<br>(%) La                                                 | covered<br>ctone (%) |
|------|--------------------------------|---|--------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|----|--------------------------------------------------------------------|----------------------|
| 1    | C <sub>4</sub> Hg<br>Me        | 1 | Me <sub>2</sub> AlCl ( 5 )<br>Me <sub>3</sub> Al ( 5 )<br>Me <sub>3</sub> Al ( 5 )                           | 1.5 h<br>3 h<br>24 h   | C <sub>4</sub> H <sub>9</sub><br>H<br>OH<br>OH  | 3  | 94<br>50<br>55                                                     | 0<br>43<br>39        |
| 2    |                                | 2 | Me <sub>2</sub> AlCl(5)<br>Me <sub>3</sub> Al(5)<br>Me <sub>3</sub> Al(5)                                    | 1.5 h<br>1.5 h<br>24 h | C <sub>4</sub> H <sub>9</sub><br>OMOM<br>OTBDPS | 4  | 87 (8) <sup>b</sup><br>40 (8) <sup>b</sup><br>31 (27) <sup>b</sup> | 2<br>36<br>16        |
| 3    | C <sub>6</sub> H <sub>13</sub> | 5 | Me <sub>2</sub> AlCl(2)<br>Me <sub>3</sub> Al(2)                                                             | 0.5 h<br>1 h           | C <sub>6</sub> H <sub>13</sub> N <sup>OMe</sup> | 9  | 91<br>84                                                           | 0<br>0               |
| 4    | Me De Me                       | 6 |                                                                                                              | 2.5 h<br>2.5 h         | Me Me Me Me                                     | 10 | 84<br>86                                                           | 0<br>0               |
| 5    | $\bigcirc$                     | 7 | Me <sub>2</sub> AlCl(4)<br>Me <sub>3</sub> Al (4)                                                            | 24 h<br>24 h           | MeQ, Me<br>N O<br>N O<br>N Me<br>OH             | 11 | 21<br>0                                                            | 60<br>94             |
| 6 M  |                                | 8 | $\begin{array}{c} \text{Me}_2\text{AlCl}(3)\\ \text{Me}_3\text{Al}(3)\\ \text{Me}_3\text{Al}(3) \end{array}$ | 1 h<br>1 h<br>24 h     |                                                 | 12 | 94 <sup>c</sup><br>42<br>86                                        | 0<br>53<br>0         |

| Table 1. | Preparation of N-Methoxy-N-Methyl Amides from Lactones by Aminolysis with                                  |
|----------|------------------------------------------------------------------------------------------------------------|
|          | Me <sub>2</sub> AICI-MeONHMe <sup>4</sup> HCl and Me <sub>3</sub> AI-MeONHMe <sup>4</sup> HCl <sup>a</sup> |

a) All reactions were carried out in CH<sub>2</sub>Cl<sub>2</sub> at room temperature.

b) The yield of the de-MOM derivative is indicated in parentheses.

c) The enantiomeric excess is > 99% based on the <sup>1</sup>H-NMR spectra of the corresponding MTPA esters.

Me<sub>2</sub>AlCl-MeONHMe·HCl smoothly reacted with 1 in  $CH_2Cl_2$  at room temperature to give 3 in 94% yield in just 1.5 h. The lactone 2 showed similar reactivity to that of the lactone 1. Treatment of 2 with Me<sub>2</sub>AlCl-MeONHMe·HCl afforded the amide 4 in 87% yield along with 8% of a de-MOM derivative and 2% of 2 after

1.5 h, while the yield of 4 by the reaction of 2 with Me<sub>3</sub>Al-MeONHMe·HCl was 40% after 1.5 h and 31% after 24 h, respectively. Then, in order to explore the generality and scope of this new reagent, Me<sub>2</sub>AlCl-MeONHMe·HCl, we applied it to the aminolysis of other lactones 5-8. The less hindered lactones 5 and 6 smoothly reacted with both reagents under the same conditions to afford the amides 9 and 10 in good yields, respectively. The lactone 7 did not react with Me<sub>3</sub>Al-MeONHMe·HCl. However, Me<sub>2</sub>AlCl-MeONHMe·HCl reacted with 7 to give the  $\beta$ -(N-methoxy-N-methylamino)amide 11 in 21% yield. Treatment of the sterically hindered lactone 8 with Me<sub>2</sub>AlCl-MeONHMe·HCl afforded the amide 12 in 94% yield after 1 h. No epimerization occurred during the reaction, which was proved by the <sup>1</sup>H-NMR spectra of the corresponding MTPA esters. On the other hand, reaction of 8 with Me<sub>3</sub>Al-MeONHMe·HCl produced 12 in only 42% yield after 1 h, although the yield of 12 was 86% after 24 h.

| Entry   | Ester              |                  | Aluminum<br>Reagent (equiv)                                                    | Reaction<br>Time       | Amide                     |    | Yield<br>(%)                             | Recovered<br>Ester (%) |
|---------|--------------------|------------------|--------------------------------------------------------------------------------|------------------------|---------------------------|----|------------------------------------------|------------------------|
| 1       | Cr OEt             | 13               | $\begin{array}{c} Me_2AlCl(3)\\ Me_3Al(3)\\ Me_3Al(3)\\ Me_3Al(3) \end{array}$ | 0.5 h<br>0.5 h<br>24 h | Cr~~N <sup>CMe</sup><br>0 | 18 | 96<br>24<br>99                           | 0<br>65<br>0           |
| 2       | Сроме              | 14               | Me <sub>2</sub> AlCl(3)<br>Me <sub>3</sub> Al(3)<br>Me <sub>3</sub> Al(3)      | 0.5 h<br>0.5 h<br>24 h | N-OMe                     | 19 | 99<br>19<br>97                           | 0<br>79<br>0           |
| 3       | Me<br>PhSOMe<br>O  | 15               | Me <sub>2</sub> AlCl(5)<br>Me <sub>3</sub> Al(5)<br>Me <sub>3</sub> Al(5)      | 2 h<br>2 h<br>24 h     | PhS<br>O<br>Me            | 20 | 97 <sup>b</sup><br>18<br>84 <sup>c</sup> | 0<br>81<br>15          |
| CL<br>4 |                    | <sup>it</sup> 16 | Me <sub>2</sub> AlCl(5)<br>Me <sub>3</sub> Al (5)<br>Me <sub>3</sub> Al (5)    | 2 h                    |                           | 21 | 97<br>7<br>76                            | 0<br>91<br>18          |
| 5       | Ph<br>Ph<br>I<br>O | 17               | Me <sub>2</sub> AlCl(5)<br>Me <sub>3</sub> Al(5)<br>Me <sub>3</sub> Al(5)      | 5.5 h                  | Ph N-OMe<br>Me            | 22 | 99<br>18<br>30                           | 0<br>80<br>69          |

 
 Table 2.
 Preparation of N-Methoxy-N-Methyl Amides from Esters by Aminolysis with Me<sub>2</sub>AlCl-MeONHMe<sup>4</sup>HCl and Me<sub>3</sub>Al-MeONHMe<sup>4</sup>HCl<sup>a</sup>

a) All reactions were carried out in CH<sub>2</sub>Cl<sub>2</sub> at room temperature.

b)  $[\alpha]_D^{28}$  +39.2 (c 2.5, CHCl<sub>3</sub>).

c)  $[\alpha]_D^{27}$  +35.5 (c 1.0, CHCl<sub>3</sub>).

Next, we examined the aminolysis of esters using Me<sub>2</sub>AlCl-MeONHMe·HCl in comparison with the reaction with Me<sub>3</sub>Al-MeONHMe·HCl. The results are shown in Table 2. All of the esters 13-17 examined were smoothly converted into the *N*-methoxy-*N*-methyl amides 18-22 in excellent yields, respectively, by the reaction with Me<sub>2</sub>AlCl-MeONHMe·HCl. On the other hand, the amination of the esters 13-17 with Me<sub>3</sub>Al-MeONHMe·HCl proceeded slowly. The amides 18-22 were obtained in 24, 19, 18, 7 and 18% yields, respectively, in the same reaction time as the corresponding reactions with Me<sub>2</sub>AlCl-MeONHMe·HCl were completed. The sterically hindered amide 22 was obtained in only 30% yield even after 24 h.

The real reaction species in the present aminolysis was proved to be Cl<sub>2</sub>AlNMe(OMe) prepared *in situ* from Me<sub>2</sub>AlCl-MeONHMe·HCl (1:1) based on the <sup>1</sup>H-NMR data { $\delta$  3.02 (s, 3H; NMe), 3.83 (s, 3H; OMe)} in CD<sub>2</sub>Cl<sub>2</sub>. The evolution of 2 mol equiv of methane gas was also observed.

The following is a representative procedure for preparation of the *N*-methoxy-*N*-methyl amide by the reaction of a lactone or an ester with Me<sub>2</sub>AlCl-MeONHMe·HCl. A solution of Me<sub>2</sub>AlCl (1.01 M hexane solution, 2-5 equiv) was added over a 5-min period to a stirred suspension of MeONHMe·HCl (the same equiv as that of Me<sub>2</sub>AlCl) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) under nitrogen at 0 °C, and the mixture was stirred for 1 h allowing the temperature to rise to room temperature. Then, a solution of a phosphate buffer (pH 8.0) (3 ml per 1 mmol of Me<sub>2</sub>AlCl) was added and the stirring was continued for 10 min. The mixture was diluted with CHCl<sub>3</sub>, filtrated through a Celite pad and washed thoroughly with CHCl<sub>3</sub>. The aqueous layer was extracted with CHCl<sub>3</sub>. The combined organic layers were washed with brine, dried over MgSO<sub>4</sub> and concentrated. The residue was purified by silica gel flash column chromatography to give the amide.

In summary, we have developed an efficient method for preparation of *N*-methoxy-*N*-methyl amides by the reaction of lactones or esters with Me<sub>2</sub>AlCl-MeONHMe·HCl. The present method proceeded faster than that with Me<sub>3</sub>Al-MeONHMe·HCl to afford the amides in exellent yields. Application of this method to natural product synthesis is being further investigated in these laboratories.

ACKNOWLEDGEMENT: We thank Ms. K. Harata for the mass spectral measurements.

## **REFERENCES AND NOTES**

- 1. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
- (a) Nakamura, S.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 4145-4148. (b) D'Aniello, F.; Mann, A.; Taddei, M. J. Org. Chem. 1996, 61, 4870-4871. (c) Miyashita, M.; Toshimitu, Y.; Shiratani, T.; Irie, H. Tetrahedron Asymmetry 1993, 4, 1573-1578. (d) Evans, D. A.; Bender, S. L. Tetrahedron Lett. 1986, 27, 799-802. Original Procedure: (e) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 4171-4174. (f) Levin, J. I.; Turos, E.; Weinreb, S. M. Synthetic Commun. 1982, 12, 989-993.
- 3 Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G. Tetrahedron Lett. 1995, 36, 5461-5464.
- 4. Shimizu, T.; Kobayashi, R.; Osako, K.; Osada, H.; Nakata, T. Tetrahedron Lett. 1996, 37, 6755-6758.

(Received in Japan 9 January 1997; revised 24 February 1997; accepted 28 February 1997)